

Low Power, +2.5 V to +5.5 V, 50 MHz Complete DDS

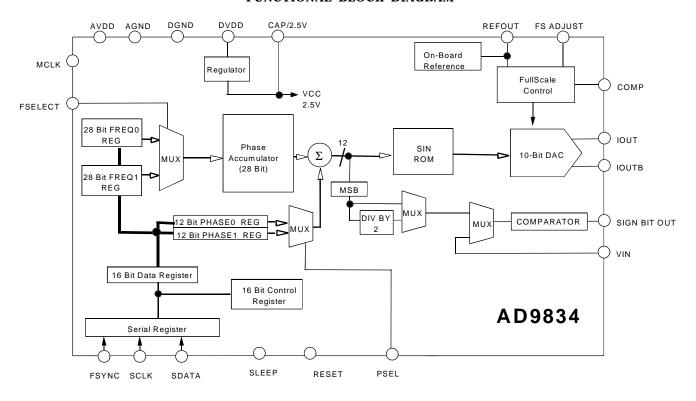
Preliminary Technical Information

AD9834

FEATURES +2.5 V to +5.5 V Power Supply 50 MHz Speed Low Jitter Clock Output Sine Output/Triangular Output Serial Loading Power-Down Option Narrowband SFDR > 72 dB 20 mW Power Consumption at 3 V 20-Pin TSSOP

APPLICATIONS
Test Equipment
Slow Sweep Generator
DDS Tuning
Digital Modulation

GENERAL DESCRIPTION


This DDS device is a numerically controlled oscillator employing a phase accumulator, a sine look-up table and a D/A converter integrated on a single CMOS chip. Clock rates up to 50 MHz are supported with a

power supply from 2.5 V to 5.5 V. Modulation capabilities are provided for phase modulation and frequency modulation. Frequency accuracy can be controlled to one part in 0.25 billion. Modulation is effected by loading registers through the serial interface.

The SIN ROM can be bypassed so that a linear up/down ramp is output from the DAC. Also, if a clock output is required, the sign data bit can be output.

The digital section is driven by an on-board regulator which steps down the applied DVDD to $+2.5~\rm V$. The analog and digital sections are independent and can be run from different power supplies i.e. AVDD can equals $5~\rm V$ with DVDD equal to $3~\rm V$, etc. A power-down pin allows external control of a power-down mode. In addition, sections of the device which are not being used can be powered down to minimise the current consumption. For example, the DAC can be powered down when a clock output is being generated. The part is available in a 24-pin TSSOP package.

FUNCTIONAL BLOCK DIAGRAM

REV PrF 04/01

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703

AD9834 SPECIFICATIONS¹

PRELIMINARY TECHNICAL DATA

(V_{DD} = +2.5 V to +5.5 V; AGND = DGND = 0 V; $T_A = T_{MIN}$ to T_{MAX} ; $R_{SET} = 3.9$ kW; $R_{LOAD} = 200$ W for IOUT and IOUTB unless otherwise noted)

Parameter	AD9834B	Units	Test Conditions/Comments
SIGNAL DAC SPECIFICATIONS			
Resolution	10	Bits	
Update Rate (f _{MAX})	50	MSPS max	
I _{OUT} Full Scale	3	mA max	
	1	V max	
Output Compliance	1	V IIIax	
DC Accuracy			
Integral Nonlinearity	± 1	LSB typ	
Differential Nonlinearity	± 0.5	LSB typ	
DDG GDEGLEIGATIONG			
DDS SPECIFICATIONS			
Dynamic Specifications			
Signal to Noise Ratio	50	dB min	$f_{MCLK} = f_{MAX}, f_{OUT} = 3 \text{ kHz}$
Total Harmonic Distortion	-53	dBc max	$f_{MCLK} = f_{MAX}, f_{OUT} = 3 \text{ kHz}$
Spurious Free Dynamic Range (SFDR)			
Wideband (± Ž MHz)	50	dBc min	$f_{MCLK} = f_{MAX}, f_{OUT} = f_{MCLK}/3$
vvidebalid (= 2 iviliz)	55	dBc min	$f_{MCLK} = f_{MAX}$, $f_{OUT} = 1$ MHz
NarrowBand (± 50 kHz)	72	dBc min	
Natiowballa (± 30 kHz)		1	$f_{MCLK} = f_{MAX}, f_{OUT} = f_{MCLK}/3$
a	75	dBc min	$f_{MCLK} = f_{MAX}, f_{OUT} = 1 MHz$
Clock Feedthrough	-55	dBc typ	
Wake Up Time	1	ms typ	
Power-Down Option	Yes		
COMPARATOR			
Logic '1' Voltage	AVDD - 0.9	V min	
Logic '0' Voltage	0.4	V min	
Propagation Delay (15 pF Load)	10	ns min	
Rise/Fall Time (15 pF Load)	5	ns max	
Output Jitter	80	ps (p-p)	
	3		
Input Capacitance		pF typ	
Input Resistance	500	kw typ	
Input Current	±12	mA min/max	
Input Voltage Range	0/AVDD	V min/max	
Comparator Offset	±30	mV min/max	
VOLUM OF PEREPENSE			
VOLTAGE REFERENCE			
Internal Reference @ +25°C	1.23	Volts typ	
T_{MIN} to T_{MAX}	$1.23 \pm 7\%$	Volts min/max	
REFIN Input Impedance	1	Kw typ	
Reference TC	100	ppm/°C typ	
		TT VT	
LOGIC INPUTS			
V _{INH} , Input High Voltage	$V_{\rm DD}$ -0.9	V min	+3.6 V to +5 V Power Supply
1 0 0	V _{DD} - 0.5 V	V min	+2.7 V to +3.6 V Power Supply
	2	V min	+2.5 V to + 2.7 V Power Supply
V Input Law Voltage	$\tilde{0}.9$	V max	+3.6 V to +5 V Power Supply
V _{INL} , Input Low Voltage			
T T	0.5	V max	+2.5 V to $+3.6$ V Power Supply
I _{INH} , Input Current	10	μA max	
C _{IN} , Input Capacitance	10	pF max	
DOWED CLIDDLIES			t t /0
POWER SUPPLIES	0 5 /5 5	***	$f_{OUT} = f_{MCLK}/3$
AVDD	2.5/5.5	V min/V max	
DVDD	2.5/5.5	V min/V max	
I_{AA}	5	mA max	
I_{DD}	1 + 0.04/MHz	mA typ	
$I_{AA} + I_{DD}^2$	7	mA typ	3 V Power Supply
*AA ' *DD	10	. *-	o v romai buppiy
		mA max	E V Dowen Comple
	10	mA typ	5 V Power Supply
	15	mA max	
Low Power Sleep Mode	0.25	mA typ	

PRELIMINARY TECHNICAL INFORMATION

AD9834

NOTES

 $^1 Operating \ temperature \ range \ is \ as follows: B Version: <math display="inline">-40^{\circ}C$ to $\ +85^{\circ}C.$

Specifications subject to change without notice.

TIMING CHARACTERISTICS ($V_{DD} = +2.5 \text{ V to } +5.5 \text{ V}$; AGND = DGND = 0 V, unless otherwise noted)

Parameter	$\begin{array}{c} \text{Limit at} \\ \text{T}_{\text{MIN}} \text{ to } \text{T}_{\text{MAX}} \\ \text{(B Version)} \end{array}$	Units	Test Conditions/Comments
$\overline{t_1}$	20	ns min	MCLK Period
t_2	8	ns min	MCLK High Duration
t_3	8	ns min	MCLK Low Duration
t_4	25	ns min	SCLK Period
t_5	10	ns min	SCLK High Duration
t_6	10	ns min	SCLK Low Duration
t_7	5	ns min	FSYNC to SCLK Falling Edge Setup Time
t ₈	10	ns min	FSYNC to SCLK Hold Time
	SCLK - 5	ns max	
t_9	5	ns min	Data Setup Time
t ₁₀	3	ns min	Data Hold Time
t ₁₁	8	ns min	FSELECT, PSEL0, PSEL1 Setup Time Before MCLK Rising Edge
t _{11A} *	8	ns min	FSELECT, PSEL0, PSEL1 Setup Time After MCLK Rising Edge

^{*}See Pin Description Section.

Guaranteed by design but not production tested.

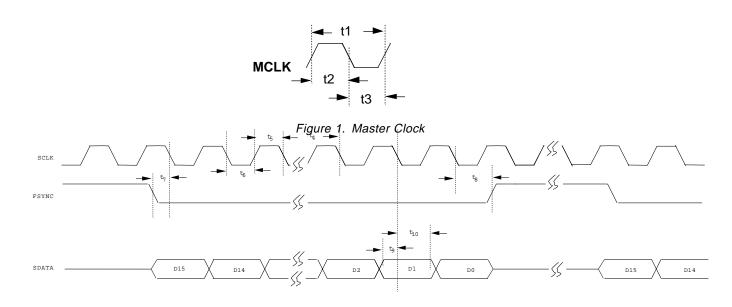


Figure 2. Serial Timing

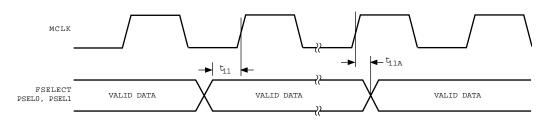


Figure 3. Control Timing

 $^{^2\}mbox{Measured}$ with the digital inputs static and equal to 0 V or DVDD.

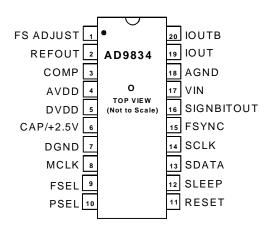
AD9834

ABSOLUTE MAXIMUM RATINGS*

Lead Temperature, Soldering

extended periods may affect device reliability.

Vapor Phase (60 sec)+215°C


Infrared (15 sec)+220°C

ORDERING GUIDE

Model		Package Description	Package Option*
AD9834BRU	-40°C to +85°C	20-Pin TSSOP	RU-16

^{*}RU = Thin Shrink Small Outline Package (TSSOP).

PIN CONFIGURATION

PRELIMINARY TECHNICAL DATA

TERMINOLOGY

Integral Nonlinearity

This is the maximum deviation of any code from a straight line passing through the endpoints of the transfer function. The endpoints of the transfer function are zero scale, a point 0.5 LSB below the first code transition $(000\dots00\ to\ 000\dots01)$ and full scale, a point 0.5 LSB above the last code transition $(111\dots10\ to\ 111\dots11)$. The error is expressed in LSBs.

Differential Nonlinearity

This is the difference between the measured and ideal 1 LSB change between two adjacent codes in the DAC.

Output Compliance

The output compliance refers to the maximum voltage which can be generated at the output of the DAC to meet the specifications. When voltages greater than that specified for the output compliance are generated, the AD9834 may not meet the specifications listed in the data sheet.

Spurious Free Dynamic Range

Along with the frequency of interest, harmonics of the fundamental frequency and images of the MCLK frequency are present at the output of a DDS device. The spurious free dynamic range (SFDR) refers to the largest spur or harmonic which is present in the band of interest. The wide band SFDR gives the magnitude of the largest harmonic or spur relative to the magnitude of the fundamental frequency in the bandwidth

 ± 2 MHz about the fundamental frequency. The narrow band SFDR gives the attenuation of the largest spur or harmonic in a bandwidth of ± 50 kHz about the fundamental frequency.

Clock Feedthrough

There will be feedthrough from the MCLK input to the analog output. Clock feedthrough refers to the magnitude of the MCLK signal relative to the fundamental frequency in the AD9834's output spectrum.

PRELIMINARY TECHNICAL INFORMATION

AD9834

PIN DESCRIPTION

Mnemonic	Function
POWER SUPPLY	
AVDD	Positive power supply for the analog section. A 0.1 µF decoupling capacitor should be connected
	between AVDD and AGND. AVDD can have a value from +2.5 V to +5.5 V.
AGND	Analog Ground.
DVDD	Positive power supply for the digital section. A 0.1 μF decoupling capacitor should be connected between DVDD and DGND. DVDD can have a value from +2.5 V to +5.5 V.
DGND	Digital Ground.
CAP/2.5 V	The digital circuitry operates from a +2.5 V power supply. This +2.5 V is generated from DVDD using an on board regulator. The regulator requires a decoupling capacitor which is connected from CAP/2.5V to DGND. If DVDD equals +2.5 V, CAP/2.5 V should be shorted to DVDD.
	L AND REFERENCE
IOUT, IOUTB	Current Output. This is a high impedance current source. A load resistor should be connected between IOUT and AGND. IOUTB should be tied directly to AGND or through an external load resistor to AGND.
FS ADJUST	Full-Scale Adjust Control. A resistor ($R_{\rm SET}$) is connected between this pin and AGND. This determines the magnitude of the full-scale DAC current. The relationship between $R_{\rm SET}$ and the full-scale current is as follows: $IOUT_{FULL-SCALE} = 12.5 \text{ x } V_{REFIN}/R_{SET}$
REFOUT	$V_{REFIN}=1.23\ V\ nominal,\ R_{SET}=3.9\ kW\ typical$ Voltage Reference Output. The AD9834 is used with a 1.23 V reference which is supplied internally. This reference is also made available on the REFOUT pin. It has a value of 1.23 V nominal.
COMP	Compensation pin. This is a compensation pin for the internal reference amplifier. A 10 nF decoupling ceramic capacitor should be connected between COMP and AVDD.
VIN	Input to comparator. The comparator can be used to generate a square wave from the sinusoidal DAC output. The DAC output should be filtered appropriately before being applied to the comparator to improve jitter. When bit SIGNPIB in the control register is set to 1, the comparator input is disconnected from VIN. Instead, the NCO's MSB is fed to the comparator input.
SIGN BIT OUT	
DIGITAL INTERI	FACE AND CONTROL
MCLK	Digital Clock Input. DDS output frequencies are expressed as a binary fraction of the frequency of MCLK. The output frequency accuracy and phase noise are determined by this clock.
FSELECT	Frequency Select Input. FSELECT controls which frequency register, FREQ0 or FREQ1, is used in the phase accumulator. The frequency register to be used can be selected using the pin FSELECT or the bit FSELECT. FSELECT is sampled on the rising MCLK edge. FSELECT needs to be in
	steady state when an MCLK rising edge occurs. If FSELECT changes value when a rising edge occurs, there is an uncertainty of one MCLK cycle as to when control is transferred to the other frequency register. To avoid any uncertainty, a change on FSELECT should not coincide with an MCLK rising edge. When the bit is being used to select the frequency register, the pin FSELECT should be tied to DGND.
PSEL	Phase Select Input. The AD9834 has two phase registers. These registers can be used to alter the value being input to the SIN ROM. The contents of the phase register can be added to the phase accumulator output, the input PSEL selecting the phase register to be used. Like the FSELECT input, PSEL is sampled on the rising MCLK edge. Therefore, this input needs to be in steady state when an MCLK rising edge occurs or there is an uncertainty of one MCLK cycle as to when control is transferred to the selected phase register. When the phase registers are being controlled by the bit PSEL, the pin should be tied to DGND.
SCLK	Serial Clock, Logic Input. Data is clocked into the AD9834 on each falling SCLK edge.
SDATA	Serial Data In, Logic Input. The 16-bit serial data word is applied to this input.
FSYNC	Data Synchronisation Signal, Logic Input. When this input is taken low, the internal logic is informed that a new word is being loaded into the device.
RESET	RESET, active high digital input. RESET resets the phase accumulator to zero which corresponds to an anlog output of midscale.

PRELIMINARY TECHNICAL DATA

AD9834

PRELIMINARY TECHNICAL DATA

SLEEP

Low Power Control, active high digital input. SLEEP puts the AD9834 into a low power mode. Internal clocks are disabled and the DAC's current sources are turned off. The AD9834 is re-enabled by taking SLEEP low.

Table I. Frequency/Phase Registers

Register	Size	Description
FREQ0 REG	28 Bits	Frequency Register 0. This defines the output frequency, when FSELECT = 0, as a fraction of the MCLK frequency.
FREQ1 REG	28 Bits	Frequency Register 1. This defines the output frequency, when FSELECT = 1, as a fraction of the MCLK frequency.
PHASE0 REG	12 Bits	Phase Offset Register 0. When PSEL = 0, the contents of this register are added to the output of the phase accumulator.
PHASE1 REG	12 Bits	Phase Offset Register 1. When PSEL = 1, the contents of this register are added to the output of the phase accumulator.

Table 2. Frequency Register Bits

D15	D14	D13		D0
0	1	MSB	14 FREQ0 REG BITS	LSB
1	0	MSB	14 FREQ1 REG BITS	LSB

Table 3. Phase Register Bits

D15	D14	D13	D12	D11		D0
1	1	0	X	MSB	12 PHASE0 REG BITS	LSB
1	1	1	X	MSB	12 PHASE1 REG BITS	LSB

Table 4. Control Register

D15	D14	D13	D0
0	0	CONTROL BITS	

Table 5. Control Register Bits

	18	ible 5. Control Register bits
Bit	Name	Function
D13	B28	Two write operations are required to load a new word into the FREQ registers. When the complete register is being loaded with a new 28-bit word, B28 can be set to 1. The first write to address 01 or 10 contains the 14 LSBs of the frequency word. The next write to this address will contain the 14 MSBs. When B28 is set to 0, the frequency register operates as 2 registers, one containing the 14 MSBs and the other containing the 14 LSBs. To alter the 14 MSBs or the 14 LSBs, a single write is made to the FREQ address while D12 of the control register informs the AD9834 whether the bits are MSBs or LSBs
D12	HLB	are MSBs or LSBs. When B28 is set to 0, the 14 MSBs of the frequency word can be altered independent of the 14 LSBs and vice versa. A single write is made to the appropriate frequency address while the HLB bit indicates whether the 14 bits being loaded are being transferred to the 14 MSBs or 14 LSBs of the register. This allows the user to continuously load the MSBs or LSBs while ignoring the remaining 14 bits. This is useful if the complete 28 bit resolution is not required. When HLB equals 1, the 14 bits of data are transferred into the 14 MSBs of the frequency register. When HLB equals 0, the 14 LSBs of the frequency register are loaded.
	FSELECT PSEL PIN/SW	This is the FSELECT bit. This is the PSEL bit. The RESET, FSELECT, PSEL and SLEEP functions can be controlled via bits in the control register or pins. PIN/SW selects the source of control for these functions. When this bit equals 0, the PHASE/FREQ registers are selected using the bits FSELECT and PSEL. The device can be reset using the RESET bit and the part is powered down using the SLEEP12 bit. When PIN/SW equals 1, the registers are selected using the FSELECT and

PSEL pins. The RESET pin is used

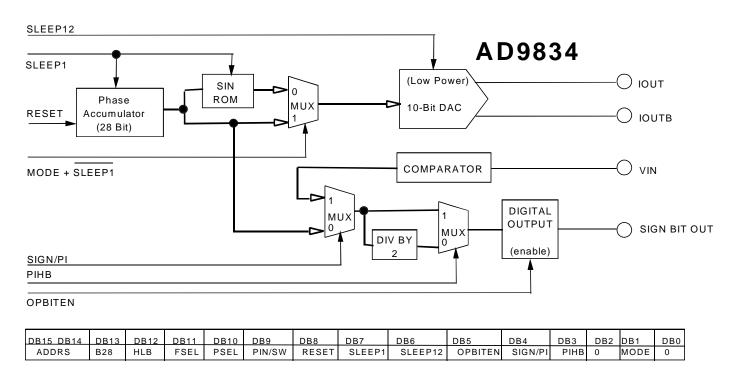
PRELIMINARY TECHNICAL INFORMATION AD9834 When this bit is set to 0, the MSB D4 **SIGNPIB** to reset the phase accumulator while from the phase accumulator is the device is powered down using the connected to pin SIGN BIT OUT, the SLEEP pin. square wave being divided by one or D8 RESET This bit resets the phase accumulator divided by two before being output. to zero which corresponds to an analog Bit PIHB determines the frequency of output of midscale. The bit is set to 1 the square wave. When SIGNPIB to perform a reset. The accumulator equals 1, the on board comparator is will remain in the reset condition until connected to SIGN BIT OUT. After RESET is set to 0. filtering the sinusoidal output from the D7 SLEEP1 When this bit is set to 1, the internal DAC appropriately, the waveform can clock is disabled. The DAC output be applied to the comparator to will remain at its present value as the generate a square waveform. NCO is no longer accumulating. D3 PIHB This bit is used in association with SLEEP12 When this bit equals 1, the DAC is OPBITEN. When OPBITEN equals powered down. This is useful when 1, the MSB is output on pin SIGN the AD9834 is used to output the BIT OUT to generate a square wave. NCO's MSB only. In this case, the When PIHB equals 0, the square wave DAC is not required so, it can be is divided by 2 before being output. powered down to reduce the power When PIHB equals 1, the MSB is consumption. passed directly to the output. D5 OPBITEN When this bit is set to 1, the MSB D2Reserved This bit must be set to 0. from the phase accumulator is routed MODE When MODE is set to 0 with SLEEP1 D1 to pin SIGN BIT OUT. It can be equal to zero, the ROM is used to sent directly to the pin or, it can be diconvert the phase information into vided by 2 prior to being output. Bit amplitude information which results in PIHB determines whether the square a sinusoidal signal at the output.

When MODE is set to 1 and SLEEP1

is set to 0, the ROM is bypassed and

the phase information from the phase

accumulator is sent directly to the DAC which results in a ramp output.


This bit must be set to 0.

wave generated by the MSB is divided

OPBITEN equals 0, there is no output

by 2 before being output. When

at SIGN BIT OUT.

D0 Reserved

Figure 4. Function of Control Bits