System power supply for CD radio cassette players BA3938

The BA3938 is a system power supply IC for use in CD radio cassette players. With one 11V output and interlocked outputs of 8.5V, 5V, 9V, and Vcc, the IC is best suited for CD radio cassette players.

Applications

CD radio cassette players

Features

- 1) One 11V output (external transistor required) and interlocked outputs of 8.5V, 5V, 9V, and Vcc are built in.
- Output current limit circuit protects the IC against short-circuiting damage.
- Compact HSIP-B12 package allows a large power dissipation.

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	24	V
Power dissipation	Pd	2200*	mW
Operating temperature	Topr	-25~+75	ĉ
Storage temperature	Tstg	$-55 \sim +150$	Ĵ

* Reduced by 17.6mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	6.5	_	22	V

Block diagram

Pin No.	Pin name	Function
1	Vcc + B output	60 mA output current interlocked with Vcc
2	Vcc	DC supply input
3	External transistor collector	Output pin for external transistors
4	External transistor base	Base pin for external transistors
5	5 V output	220 mA power supply output current
6	8.5 V output	20 mA power supply output current
7	9 V output	300 mA power supply output current
8	С	Capacitor pin for improving the 9V output ripple rejection
9	N.C.	_
10	STAND BY	Pin for ON/OFF control of each output
11	PRE GND	Small current GND
12	GND	Large current GND

Input / output circuits

- Vcc

<u>}</u>

4k

Units : R $[\Omega]$

•Electrical characteristics (unless otherwise noted, $Ta = 25^{\circ}C$ and Vcc = 15.0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Standby supply current	lsт	—	0	10	μA	STB pin=0 V
Output voltage 1 (11 V)	V ₀₁	10.45	11.0	11.55	V	Load current=550 mA, external transistor (2SB1185, F-rank)
Base current drive capacity	lo1	22	32	40	mA	
Output voltage 2 (8.5 V)	Vo2	8.0	8.5	9.0	V	lo2=10mA
Voltage regulation	ΔV021	_	40	200	mV	Vcc=10~24V, lo2=10mA
Current variation	ΔV022	_	20	200	mV	lo2=0~10mA
Minimum I/O voltage differential	∆ V023	_	0.3	0.5	V	lo2=10mA
Output current capacity	l02	20	_	-	mA	
Ripple rejection ratio	R.R2	50	60	-	dB	f=100Hz, VRR=-10dBV
Output voltage 3 (5 V)	Vos	4.75	5.0	5.25	V	lo3=200mA
Voltage regulation	ΔV031	-	20	200	mV	Vcc=7.25~24V, lo3=200mA
Current variation	ΔV032	_	100	250	mV	I₀₃=0~200mA
Minimum I/O voltage differential	ΔV033	_	1.0	1.5	V	Io3=200mA
Output current capacity	I 031	220	_	-	mA	
Instantaneous output current capacity	I 032	500	_	-	mA	t=10ms
Ripple rejection ratio	R.R3	50	60	-	dB	f=100Hz, V _{RR} =-10dBV
Output voltage 4 (9 V)	Vo4	8.5	9.0	9.5	V	I ₀₄ =240mA
Voltage regulation	ΔV041	-	20	200	mV	Vcc=12~24V, lo4=240mA
Current variation	ΔV042	—	40	200	mV	Io4=0~240mA
Minimum I/O voltage differential	Δ V043	—	1.1	2.1	V	I₀₄=240mA
Output current capacity	I 041	300	_	-	mA	
Instantaneous output current capacity	042	500	_	-	mA	t= 10ms
Ripple rejection ratio	R.R4	50	62	-	dB	f=100Hz, V _{RR} =-10dBV
Minimum I/O voltage differential (Vcc+ B)	Δ V051	—	0.3	0.5	V	Ios=35mA
Current variation	∆ V052	_	20	200	mV	lo₅=0~35mA
Output current capacity	l05	60	_	-	mA	
⟨Input (STB)⟩						•
Voltage when standby OFF	VSTOFF	_	_	0.9	V	STANDBY state
Voltage when standby ON	VSTON	1.7	-	-	V	All output ON
Input high level current *	lh1	_	195	300	μA	STANDBY pin=5 V

ONot designed for radiation resistance.

* Input current (HIGH) on the STANDBY pin depends on the external resistors, whose recommended resistance is 22k Ω.

Regulator ICs

Fig.1 Standby pin external resistance

Circuit operation

All outputs rise when voltage is applied on the STANDBY pin.

Fig.2 Timing chart

Application example

Fig.4

Operation notes

(1) Operating power supply voltage

When operating within proper ranges of power supply voltage and ambient temperature, most circuit functions are guaranteed. Although the rated values of electrical characteristics cannot be absolutely guaranteed, characteristic values do not change drastically within the proper ranges.

(2) Power dissipation (Pd)

Refer to the heat reduction characteristics (Fig. 5) and the rough estimation of IC power dissipation given on a separate page. If power dissipation exceeds the allowable limit, the functionality of IC will be degraded (such as reduction of current capacity by increased chip temperature). Make sure to use the IC within the allowable range of power dissipation with a sufficient margin.

(3) Preventing oscillation at each output

To stop oscillation of output, make sure to connect a capacitor having a capacitance of 10μ F or greater between GND and each output pin. Oscillation can occur if capacitance is susceptible to temperature. We recommend using a tantalum electrolytic capacitor with minimal changes in capacitance. Also, output can be further sta-

bilized by connecting a bypass capacitor between V_{CC} and GND.

(4) Overcurrent protection circuit

An overcurrent protection circuit is installed in each output system, based on the respective output current. This prevents IC destruction by overcurrent, by limiting the current with a curve shape of "7" in the voltage-current graph (a curve shape of "inverted -L" for V_{CC} + B). The IC is designed with margins so that current flow will be restricted and latching will be prevented even if a large current suddenly flows through a large capacitor. Note that these protection circuits are only good for preventing damage from sudden accidents. Make sure your design does not cause the protection circuit to operate continuously under transitional conditions (for instance, if output is clamped at $1V_F$ or higher, short mode circuit operates at $1V_F$ or lower). Note that the circuit ability is negatively correlated with temperature.

Regulator ICs

(5) Thermal protection circuit

A built-in thermal protection circuit prevents thermal damage to the IC. All outputs except V_{CC} + B are switched OFF when the circuit operates, and revert to the original state when temperature drops to a certain level.

(6) Grounding

To minimize the variation of output voltage due to variations in load current, the GND (pin 12, for large current) and the PRE GND (pin 11, for small current) pins are separately provided. Make sure to connect circuits to correct pins.

(7) STANDBY voltage

Note that ON-state voltage and HIGH-state input current of each output change when the external resistors of the STANDBY pin are changed. These values are roughly estimated as :

STB voltage when ON = 0.7 (R1 + R2) / R2 STB current when HIGH = (5 - 0.7) / R1

Thermal derating cueve

Estimate of allowable power dissipation (PMAX.)

- Power consumed by Vcc + B
- Power consumed by OUT 5V
- Power consumed by CD 8.5V
- \bullet Power consumed by OUT 9V
- Power consumed internally by each circuit

 $\begin{array}{l} \mathsf{P}_1 = (\mathsf{V}_{\mathsf{CC}} - \mathsf{V}_{\mathsf{CC}} + \mathsf{B}) \times \text{maximum output current of } \mathsf{V}_{\mathsf{CC}} + \mathsf{B} \\ \mathsf{P}_2 = (\mathsf{V}_{\mathsf{CC}} - \mathsf{5V}) \times \text{maximum output current of } \mathsf{OUT} \, \mathsf{5V} \\ \mathsf{P}_3 = (\mathsf{V}_{\mathsf{CC}} - \mathsf{8.5V}) \times \text{maximum output current of } \mathsf{OUT} \, \mathsf{8.5V} \\ \mathsf{P}_4 = (\mathsf{V}_{\mathsf{CC}} - \mathsf{9V}) \times \text{maximum output current of } \mathsf{OUT} \, \mathsf{9V} \\ \mathsf{P}_5 = \mathsf{V}_{\mathsf{CC}} \times \text{supply current} \\ \end{array}$

$$\mathsf{P}_{\mathsf{MAX.}} = \mathsf{P}_1 + \mathsf{P}_2 + \mathsf{P}_3 + \mathsf{P}_4 + \mathsf{P}_5$$

•External dimensions (Units: mm)

