CXG1121TN

DESCRIPTION

The CXG1121TN is one of a range of low insertion loss, high power MMIC antenna switches for GSM / GPRS Dualband, Tripleband (CXG1122EN) and Dualmode GSM/UMTS (CXG1114EN) applications. The low insertion loss on transmit means increased talk time as the Tx power amplifier can be operated at a lower output level. On chip logic reduces component count and simplifies PCB layout by allowing direct connection of the switch to digital baseband control lines with

CMOS logic levels.

This switch is an SP4T, one antenna can be routed to either of the 2 Tx or 2 Rx ports. It requires 3 CMOS control lines (Tx/Rx, GSM900/1800 and Standby).

The Sony GaAs JFET process is used for low insertion loss. An evaluation PCB is available.

Features

- Insertion Loss (Tx) 0.5dB typical at 34dBm (GSM 900)
- 3 CMOS compatible Control Lines
- Low second harmonic, -40dBm typical, at 34dBm (GSM 900)
- Small package Size: TSSOP-16 pin (3.9mm x 4.1mm x 1.2mm)

Applications

- Dualband Handsets using combinations of GSM900/GSM1800/GSM1900.
- **GPRS Class 12 Handsets**

Structure


GaAs J-FET MMIC

File: CXG1121TN2.3

GaAs MMIC's are ESD sensitive devices. Special handling precautions are required. The IC will be damaged in the range from 100V to 200V @200pF Ω and below 500V @ 100pF 1500 Ω The actual

Version 2.3 Date 14/05/01

ESD test data will be available later.

SONY

SP4T GSM / GPRS DUALBAND ANTENNA SWITCH+LOGIC

Truth Table

On Path	Band Select	Tx(H)/Rx(L)	Standby
ANT - Tx1 DCS 1800	н	н	н
ANT - Tx2 GSM 900	L	н	н
ANT - Rx1 GSM 900/DCS1800	L	L	н
ANT - Rx2 GSM 900/DCS1800	н	L	н
OFF	-	-	L

Other frequency assignments upon request. See last page for contact details.

Electrical Characteristics

 $(T_{amb} = 25^{\circ}C)$

	Symbol	Path	Condition	Min.	Тур.	Max.	Unit
		Tx2 - ANT	*1		0.5	0.7	dB
Insertion Loss	IL	Tx1 - ANT	*2		0-6	0.8	dB
		ANT – Rx1	*3		0.55	0.75	dB
		ANT – Rx2	*4		0.7	0.9	dB
Isolation	ISO	ANT – Tx1	*3		20		dB
		ANT – Tx2	*4		17		dB
		Tx2 - Rx1,Rx2	*1		20		dB
		Tx1 – Rx1,Rx2	*2		20		dB
VSWR	VSWR				1.2		
Harmonics [†]	2fo	GSM Tx – ANT	*1		-40	-36	dBm
	3fo		*1		-34	-30	dBm
	2fo	DCS TX - ANT	*2		-40	-36	dBm
	3fo		*2		-34	-30	
P _{1dB} Compression	P _{1dB}	GSM Tx – ANT	*1		36		dBm
Input Power		DCS TX – ANT	*2		36		dBm
Control Current	 ctl		Vdd =3V		80	120	μΑ
Supply Current	J DD		STBY=H		0.5	1.0	mA
Leakage Current	j ik		STBY=L		90		μА

Electrical characteristics are measured with all RF ports terminated in 50 Ohms.

- * 1 Power incident on GSM Tx, Pin =34dBm, 880 to 915 MHz, Vdd=5.0V, GSM Tx enabled
- * 2 Power incident on DCS Tx, Pin =32dBm, 1710 to 1785 MHz, Vdd=5.0V, DCS Tx enabled
- * 3 Power incident on ANT, Pin =10dBm, 925 to 960 MHz, Vdd=5.0V, GSM Rx enabled
- * 4 Power incident on ANT, Pin = 10dBm, 1805 to 1880 MHz, Vdd=5.0V, DCS Rx enabled

Version 2.3 Date 14/05/01 2

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits

[†] Harmonics measured with Tx inputs harmonically matched. We recommend the use of harmonic matching to ensure optimum performance.

SP4T GSM / GPRS DUALBAND ANTENNA SWITCH+LOGIC

Supply voltage value (Vdd):

Mode	Minimum	Typical	Maximum
GSM/DCS Tx	4.5V	5V	5.7V
GSM/DCS Rx	2.7V	3V	4V

CMOS logic value:

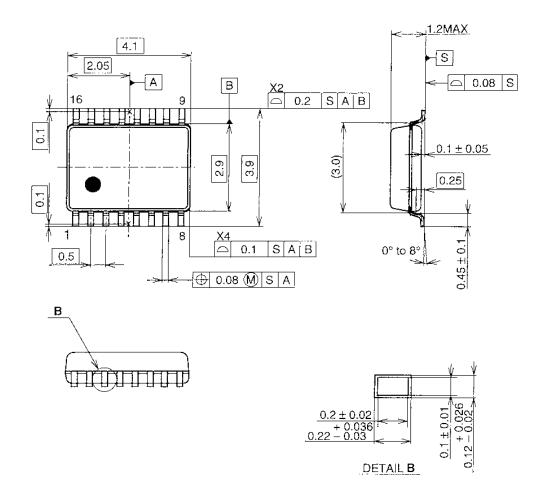
	Minimum	Typical	Maximum
High	2.4V	2.8V	3.2V
Low	0V		0.4V

Absolute Maximum Ratings (Ta = 25°C)

- Bias Voltage Vdd 7V
- Control Voltage Vctl 5V
- Operating Temperature -20°C to +80°C

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits

Pin Out


		_
GND	Tx1	
GND	GND	
ANT	Tx2	
GND	GND	
VDD	Rx1	
GND	GND	
Band Select	Rx2	
Tx/Rx	STDBY	Pin No 1

Version 2.3 Date 14/05/01 4

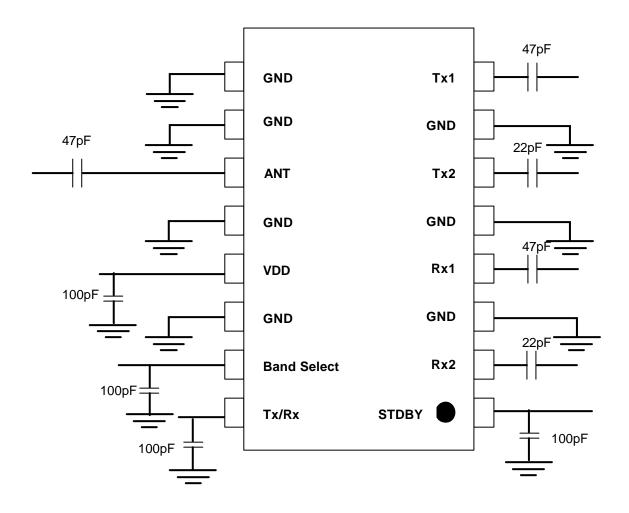
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits

TSSOP-16P-L01

16PIN TSSOP(PLASTIC)

PACKAGE STRUCTURE

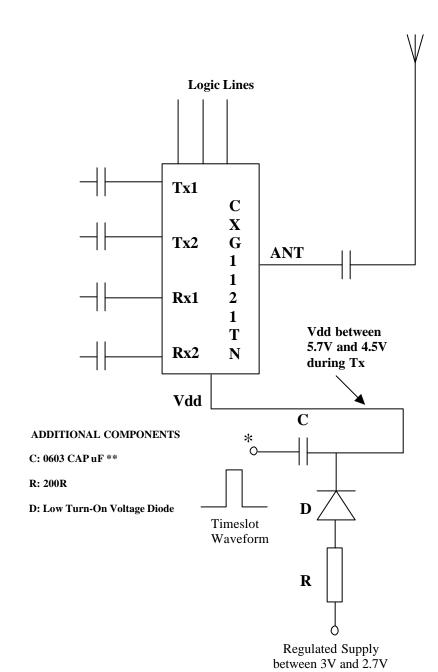
SONY CODE	TSSOP-16P-L01
EIAJ CODE	
JEDEC CODE	


PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.03g

Version 2.3 Date 14/05/01 5

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits

DC Blocking Capacitors and Decoupling Capacitors


Note: Capacitors are required on all RF ports for DC blocking (22pF - 47pF). Decoupling capacitors are required on Vdd and on control lines (100pF).

Version 2.3 Date 14/05/01 6

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits

Application Note 1

Operating the CXG1121TN from Regulated Supplies between 3V and 2.7V

Technique

Allows use of CXG1121TN SP4T in handsets with regulated supplies between 3V and 2.7V.

The CXG1121TN is for 5V nominal battery voltage but works well down to a Vdd of 4.5V.

This technique is only necessary for Tx modes.

Fundamentally, the time slot waveform is added to the supply voltage to give a Vdd between 5.7V and 4.5V (depending on supply) during Tx modes.

This technique is suitable for up to 4 consecutive Tx timeslots (i.e. GPRS Class 12).

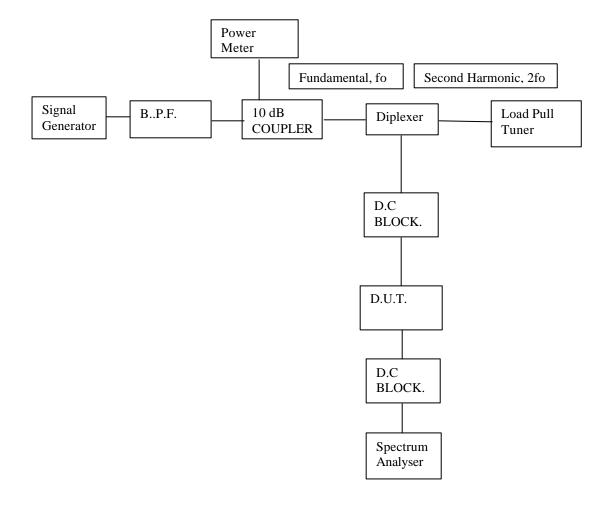
*This waveform may be taken from the PA ramping input (or drain supply in case of drain power control) or via the Tx ON/OFF Logic.

**Minimum and recommended value of capacitance, C, depends on GPRS class and is given by the following table.

Number of	Minimum and
Consecutive Tx	Recommended
Timeslots	Value of
	Capacitance, C,
	(uF)
1	1.0
2	2.0
4	2.0

Version 2.3 Date 14/05/01 7

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits


Application Note 2

Impedance Matching for Harmonic Minimisation

This note outlines the method used to find the source impedance to present to a transmit port at the second harmonic frequency (2fo) to reduce the second harmonic level at the antenna.

This should be carried out for a set of devices that represent the process variants. This way a compromise can be found that suits all variants.

The necessary equipment is shown immediately below.

Version 2.3 Date 14/05/01 8

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits

SP4T GSM / GPRS DUALBAND ANTENNA SWITCH+LOGIC

The device should be mounted on a PCB with 50Ω tracks running from all RF pins to SMA connectors on the PCB edge (DUT). All ports should be externally DC blocked and unused ports should be terminated in 50Ω . All measurements should be performed at the incident powers for which the harmonic levels are specified in this document.

The 2nd Harmonic level at the Antenna Port is measured using the Spectrum Analyser and the Vertical and Horizontal position of the Load Pull Stub adjusted such that this level is minimised.

The device should then be removed from the board and an SMA connector mounted such that the source impedance seen by the transmit port at 2fo can be measured using a VNA.

Measurements should be de-embedded to the end of the SMA centre pin.

A network should then be designed to match the impedance of the low pass filter (LPF), which usually comes in front of the device, to the 2fo source impedance that gives sufficiently reduced 2fo levels for all devices measured.

The network should be designed to maintain a good match and insertion loss at the fundamental frequency.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits

SONY SEMICONDUCTOR AND DEVICES EUROPE SALES OFFICES

Europe

European Design Center:

The Cresent, Jays Close, Basingstoke,

Hampshire, RG22 4DE, United Kingdom

Tel: +44-1256-388883 Fax: +44-1256-388705 Email: thomas.eichhorst@sde.eu.sony.com

US, Canada

SONY Electronics Inc.

16450 West Bernardo Drive / MZ5100

San Diego, California 92127-1804

Tel: +1-858-942-5193 Fax: +1-858-942-9197 Email: nobuyasu.matsuoka@am.sony.com

Others

Semiconductor & Network Company

Gate City Osaki East Tower Osaki East Tec.

1-11-1 Osaki Shinagawa-ku, Tokyo, 141-0032 Japan

Tel: +81-3-5435-3522 Fax: +81-3-5435-3586

Email: seiji.yagawa@jp.sony.com

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits