

QUADRUPLE D-TYPE | \$54175 EDGE-TRIGGERED FLIP-FLOPS

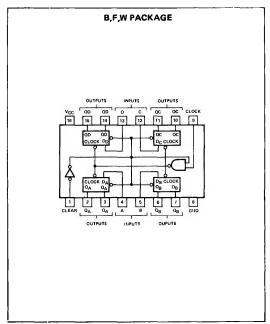
N74175

\$54175-B.F.W • N74175-B.F

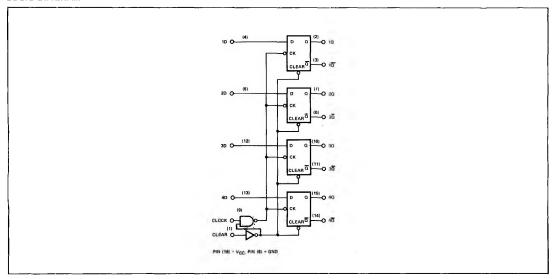
DIGITAL 54/74 TTL SERIES

DESCRIPTION

These monolithic, positive-edge-triggered flip-flops utilize TTL circuits to implement the D-type flip-flop logic. Information at input D is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D-input signal has no effect.


These circuits are fully compatible for use with most TTL or DTL circuits. A full fan-out to 10 low logic-level loads and 20 highlogic-level loads is available from each of the outputs. This simplifies system design by allowing unused inputs to be tied to driven inputs. Maximum clock frequency is typically 25 megahertz, with a typical power dissipation of 38 milliwatts per flip-flop.

TRUTH TABLE


INPUT	OUTPUT
t _n	t _n + 1
D	a
н	н
L	L

tn = Bit time before clock pulse transition. $t_n + 1 = Bit$ time after clock pulse transition.

PIN CONFIGURATION

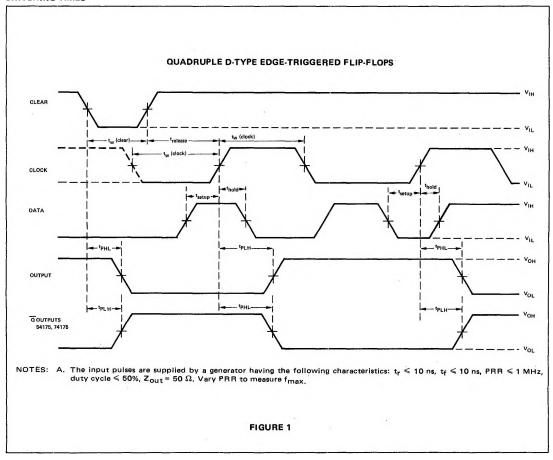
LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

		54175			74175			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	v
Normalized fan-out from	High Logic							
each output, N	Level			20			20	
	Low Logic Level			10			10	•
Input clock frequency, f _{Cl}	ock	0		25	0		25	MHz
Width of clock or clear pu (See Figure 1)	lse, t _W	20			20			ns
Data setup time, t _{setup} (See Figure 1)		20			20			ns
Hold time thold (See Figure 1)		0			0			ns
Operating free-air tempera	ture, TA	-55	25	125	o	25	70	°c
Clear release setup, t _{releas} (See Figure 1)	e	25			25			ns

ELECTRICAL CHARACTERISTICS (over operating free-air temperature range unless otherwise noted)

				54175		74175				
	PARAMETER	TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			2			v
VIL	Low-level input voltage	á-				0.8			8.0	v
v _I	Input clamp voltage	V _{CC} = MAX,	I _I = -12 mA			-1.5			-1.5	v
v _{он}	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} =-800 μA	2.4			2.4			v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2V, I _{OL} = 16 mA			0.4	1		0.4	v
ij	Input current at maxi- mum input voltage	V _{CC} = MAX,	V _I = 5.5V			1			1	mA
ΉΗ	High-level input current	V _{CC} = MAX,	V _I = 2.4 V			40			40	μА
IIL	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX		-20		-57	-18		-57	mA
¹ cc	Supply current	V _{CC} = MAX								
		Note 1			30	45		30	45	mA


[§] Not more than one output should be started at a time.

NOTE 1: With all outputs open and 4.5V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5V, is applied to clock.

SWITCHING CHARACTERISTICS, V_{CC} = 5 V, T_A = 25°C, N = 10

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}	Maximum input clock frequency		25	35		MHz
^t PHL	Propagation delay time, high-to- low-level output Q from clear	C _L = 15 pF R _L = 400		23	35	ns
^t PLH	Propagation delay time low-to- high-level output Q from clear (54175, 74175)			16	25	ns
tPHL	Propagation delay time, high-to- low-level output from clock			21	30	ns
tРLН	Propagation delay time, low-to- high-level output from clock			20	30	ns

SWITCHING TIMES

